论文标题

深灯:深度轻巧的功能交互,以加速广告服务中的CTR预测

DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving

论文作者

Deng, Wei, Pan, Junwei, Zhou, Tian, Kong, Deguang, Flores, Aaron, Lin, Guang

论文摘要

点击率(CTR)预测是在线显示广告中的至关重要任务。已经提出了基于嵌入的神经网络,以使用浅层组件和深层神经网络(DNN)组件学习显式特征相互作用。然而,这些复杂的模型将预测推断降低了至少数百次。为了解决生产中广告服务的延迟和高内存使用情况的问题,本文介绍了\ emph {deeplight}:一个框架,以在三个方面加速CTR预测的框架:1)通过在浅层组件中明确搜索信息的特征相互作用来加速模型推断; 2)在DNN组件中的层内和层间级别的修剪冗余层和参数; 3)促进嵌入层的稀疏性,以保留最判别的信号。通过结合上述努力,提出的方法在Criteo数据集上加速了46倍的模型推断,在Avazu数据集上加速了27倍,而不会损失预测准确性。这为成功部署复杂的基于嵌入的神经网络的生产铺平了道路。

Click-through rate (CTR) prediction is a crucial task in online display advertising. The embedding-based neural networks have been proposed to learn both explicit feature interactions through a shallow component and deep feature interactions using a deep neural network (DNN) component. These sophisticated models, however, slow down the prediction inference by at least hundreds of times. To address the issue of significantly increased serving delay and high memory usage for ad serving in production, this paper presents \emph{DeepLight}: a framework to accelerate the CTR predictions in three aspects: 1) accelerate the model inference via explicitly searching informative feature interactions in the shallow component; 2) prune redundant layers and parameters at intra-layer and inter-layer level in the DNN component; 3) promote the sparsity of the embedding layer to preserve the most discriminant signals. By combining the above efforts, the proposed approach accelerates the model inference by 46X on Criteo dataset and 27X on Avazu dataset without any loss on the prediction accuracy. This paves the way for successfully deploying complicated embedding-based neural networks in production for ad serving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源