论文标题

潘多拉的盒子问题与订单约束

Pandora's Box Problem with Order Constraints

论文作者

Boodaghians, Shant, Fusco, Federico, Lazos, Philip, Leonardi, Stefano

论文摘要

最初由Weitzman于1979年正式正式正式化的Pandora的盒子问题,当评估昂贵时,从一组随机,替代选项中选择了模型。例如,这包括雇用熟练工人的问题,只能聘请一名雇员,但对每个候选人的评估是一个昂贵的程序。韦兹曼(Weitzman)表明,潘多拉(Pandora)的盒子问题承认了一个优雅,简单的解决方案,其中将选项以降低的保留价值顺序考虑,即将打开盒子的预期边缘增益降低到零。当盒子之间施加秩序或优先级约束时,我们首次研究此问题。我们表明,尽管难以定义盒子的预订值,这些盒子考虑到了各种选项的深入和周内探索,但仍存在贪婪的最佳策略,并且可以有效地计算出类似树状的订单约束。我们还证明,当使用某些Matroid约束来进一步限制可能打开的框或给出订单约束作为DAG上的可及性约束时,找到大约最佳的自适应搜索策略是NP-HARD。我们通过基于最佳自适应策略和非自适应策略之间的联系,具有有界自适应差距的最佳自适应策略与非自适应策略之间的联系来补充上述结果。

The Pandora's Box Problem, originally formalized by Weitzman in 1979, models selection from set of random, alternative options, when evaluation is costly. This includes, for example, the problem of hiring a skilled worker, where only one hire can be made, but the evaluation of each candidate is an expensive procedure. Weitzman showed that the Pandora's Box Problem admits an elegant, simple solution, where the options are considered in decreasing order of reservation value,i.e., the value that reduces to zero the expected marginal gain for opening the box. We study for the first time this problem when order - or precedence - constraints are imposed between the boxes. We show that, despite the difficulty of defining reservation values for the boxes which take into account both in-depth and in-breath exploration of the various options, greedy optimal strategies exist and can be efficiently computed for tree-like order constraints. We also prove that finding approximately optimal adaptive search strategies is NP-hard when certain matroid constraints are used to further restrict the set of boxes which may be opened, or when the order constraints are given as reachability constraints on a DAG. We complement the above result by giving approximate adaptive search strategies based on a connection between optimal adaptive strategies and non-adaptive strategies with bounded adaptivity gap for a carefully relaxed version of the problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源