论文标题
稳定代数的稳定性calabi-yau特性
Stably Calabi-Yau properties of derivation quotient algebras
论文作者
论文摘要
本文的目的是研究衍生商代数的双模型稳定的calabi-yau特性。我们给出了一个扭曲的稳定的calabi-yau代数的定义,并表明每个扭曲的派生商代数$ a $ a $ a $ a $ a $为$ a $ a $ a $ a bimodule稳定扭曲的calabi-yau提供了bimodule分辨率的开始。在这种情况下,我们对Yu [Yu12]的一些结果做出了新的解释,这意味着$ a $几乎是定期类型的Koszul。利用Amiot和Oppermann在[AO14]中给出的更高的前体代数的表征,我们证明具有具有同质潜力和精确相关复合物的有限尺寸大型衍生商代数是较高的量子subgebra的较高的预剥离代数,是Koszul和$(D-1-1-1-1-1-1)$ - 代表。
The aim of this paper is to study bimodule stably Calabi-Yau properties of derivation quotient algebras. We give the definition of a twisted stably Calabi-Yau algebra and show that every twisted derivation quotient algebra $A$ for which the associated bimodule complex gives the beginning of a bimodule resolution for $A$ is bimodule stably twisted Calabi-Yau. In this setting we give a new interpretation of some results by Yu [Yu12], implying that $A$ is almost Koszul of periodic type. Using the characterization of higher preprojective algebras given by Amiot and Oppermann in [AO14], we prove that finite dimensional bigraded derivation quotient algebras with homogeneous potential and exact associated complex are higher preprojective algebras of their degree-zero subalgebra, which is Koszul and $(d-1)$-representation finite.