论文标题
通过平行传输的旋转框架中Navier-Stokes方程的重力双重
Gravity dual of Navier-Stokes equation in a rotating frame through parallel transport
论文作者
论文摘要
流体 - 重力对应关系记录了爱因斯坦电场的一类动力学时空解决方案之间的精确数学图与其相应的双流体流的动力学,该动力学受流体动力学的Navier-Stokes(NS)方程所控制的相应双流体流。在过去的四十年中,这种引人注目的连接已在几种基于动态的方法中探讨,并以各种形式浮出水面。在最近的结构中,已经表明,几何双重二元的歧管特性实际上与不可压缩流体的动力学密切相关,因此绕过了常规的壳上的角度。在这种处方之后,我们构建了几何描述,该描述有效地捕获了不可压缩的NS流体相对于均匀旋转框架的动力学。我们提出了由$(p+2)$ - 尺寸描述的引力双重(S),以使一个适当定义的散装速度矢量的平行传输方程将诱导的时间表超级表现到诱导的时间表超表现时,需要相关旋转型号的不可压缩的NS方程,以确保相关的固定效率,并在均匀旋转的框架上保持稳定性。 $(p+1)$ - 尺寸。我们认为,相对于(W.R.T)统一的旋转框架,可以有效地将所提出的度量的自由流动流在被提议的度量的流动流动上。我们还提出了有关时空旋转参数如何编码与相应流体双重惯性效应有关的信息的暗示见解。
The fluid-gravity correspondence documents a precise mathematical map between a class of dynamical spacetime solutions of the Einstein field equations of gravity and the dynamics of its corresponding dual fluid flows governed by the Navier-Stokes (NS) equations of hydrodynamics. This striking connection has been explored in several dynamics-based approaches and has surfaced in various forms over the past four decades. In a recent construction, it has been shown that the manifold properties of geometric duals are in fact intimately connected to the dynamics of incompressible fluids, thus bypassing the conventional on-shell standpoints. Following such a prescription, we construct the geometrical description that effectively captures the dynamics of an incompressible NS fluid with respect to a uniformly rotating frame. We propose the gravitational dual(s) described by bulk metric(s) in $(p+2)$-dimensions such that the equations of parallel transport of an appropriately defined bulk velocity vector field when projected onto an induced timelike hypersurface require that the incompressible NS equation of a fluid relative to a uniformly rotating frame be satisfied at the relevant perturbative order in $(p+1)$-dimensions. We argue that free fluid flows on manifold(s) described by the proposed metric(s) can be effectively considered as an equivalent theory of non-relativistic viscous fluid dynamics with respect to (w.r.t) a uniform rotating frame. We also present suggestive insights as to how space-time rotation parameters encode information pertaining to the inertial effects in the corresponding fluid dual.