论文标题
使用分析成本和学习初始化的动态四足动物的可靠轨迹
Reliable Trajectories for Dynamic Quadrupeds using Analytical Costs and Learned Initializations
论文作者
论文摘要
在腿部机器人技术领域的动态遍历不平衡是一个主要目标。这些系统的最新模型预测控制方法可以产生短持续时间的强大动态运动。但是,在浏览复杂地形时可能需要更长的时间范围。一个最近开发的框架,即步行机器人(TOWR)的轨迹优化,可以计算此类计划,但不能保证其在不确定性和扰动下在真实平台上的可靠性。我们扩展了以分析成本的范围,以生成最先进的全身跟踪控制器可以成功执行的轨迹。为了减少在线计算时间,我们实施了基于学习的基于学习的方案,以基于离线经验的非线性程序初始化。实际四倍的轨迹在不同地形上的执行长达16个脚步和5.5 s,这证明了该方法在硬件上的有效性。这项工作建立在一个在线系统上,该系统可以有效,稳健地重建动态轨迹。
Dynamic traversal of uneven terrain is a major objective in the field of legged robotics. The most recent model predictive control approaches for these systems can generate robust dynamic motion of short duration; however, planning over a longer time horizon may be necessary when navigating complex terrain. A recently-developed framework, Trajectory Optimization for Walking Robots (TOWR), computes such plans but does not guarantee their reliability on real platforms, under uncertainty and perturbations. We extend TOWR with analytical costs to generate trajectories that a state-of-the-art whole-body tracking controller can successfully execute. To reduce online computation time, we implement a learning-based scheme for initialization of the nonlinear program based on offline experience. The execution of trajectories as long as 16 footsteps and 5.5 s over different terrains by a real quadruped demonstrates the effectiveness of the approach on hardware. This work builds toward an online system which can efficiently and robustly replan dynamic trajectories.