论文标题

在无界分配晶格上背负

Piggybacking over unbounded distributive lattices

论文作者

Cabrer, Leonardo M., Priestley, Hilary A.

论文摘要

本文填补了关于自然二元理论文献的空白。它涉及基于分布晶格的代数类别的双重表示,其中不假定晶格还原具有界限。理论的发展与详尽的有界案例相似的理论最初是由需求驱动的。这与对Sugihara代数和Sugihara Monoids的重大研究有关。本文中的定理以系统的方式适用于一系列示例:Sugihara类型的各种;其他类别的代数先前处理过的临时;并根据需要进行更多课程。

This paper fills a gap in the literature on natural duality theory. It concerns dual representations of categories of distributive-lattice-based algebras in which the lattice reducts are not assumed to have bounds. The development of theory to parallel what is known for the exhaustively-studied bounded case was initially driven by need. This arose in connection with a major investigation of Sugihara algebras and Sugihara monoids. The theorems in this paper apply in a systematic way to a range of examples:varieties of Sugihara type; other classes of algebras previously treated ad hoc; and further classes as required.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源