论文标题

稀疏图形量子代码的精致信念传播解码

Refined Belief Propagation Decoding of Sparse-Graph Quantum Codes

论文作者

Kuo, Kao-Yueh, Lai, Ching-Yi

论文摘要

由稀疏矩阵构建的量子稳定器代码具有良好的性能,并且可以通过信念传播(BP)有效地解码。常规的BP解码算法将二元稳定器代码视为GF上的添加代码(4)。该算法具有处理检查节点消息的相对复杂的过程,这会引起更高的解码复杂性。此外,稳定器代码的BP解码通常由于基础制革商图中的许多短周期而遭受性能损失。在本文中,我们提出了一种精制的BP解码算法,以大致与二进制BP相同的量子代码。对于给定的错误综合征,该算法解码与传统的第四纪BP相同,但是传递的节点到节点消息是单值的,与第四纪BP不同,在该Quaternary BP中,需要多级节点对节点消息。此外,消息强度归一化的技术自然可以应用于这些单值消息以提高性能。另一个观察结果是,消息更新时间表会影响BP解码对短周期的性能。我们表明,根据串行时间表(或其他时间表),运行具有消息强度归一化的BP可能会显着改善计算机模拟中的解码性能和错误平面。

Quantum stabilizer codes constructed from sparse matrices have good performance and can be efficiently decoded by belief propagation (BP). A conventional BP decoding algorithm treats binary stabilizer codes as additive codes over GF(4). This algorithm has a relatively complex process of handling check-node messages, which incurs higher decoding complexity. Moreover, BP decoding of a stabilizer code usually suffers a performance loss due to the many short cycles in the underlying Tanner graph. In this paper, we propose a refined BP decoding algorithm for quantum codes with complexity roughly the same as binary BP. For a given error syndrome, this algorithm decodes to the same output as the conventional quaternary BP but the passed node-to-node messages are single-valued, unlike the quaternary BP, where multivalued node-to-node messages are required. Furthermore, the techniques of message strength normalization can naturally be applied to these single-valued messages to improve the performance. Another observation is that the message-update schedule affects the performance of BP decoding against short cycles. We show that running BP with message strength normalization according to a serial schedule (or other schedules) may significantly improve the decoding performance and error floor in computer simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源