论文标题

布莱恩特 - 萨拉蒙$ \ mathrm {g} _2 $歧管和共同纤维纤维

Bryant-Salamon $\mathrm{G}_2$ manifolds and coassociative fibrations

论文作者

Karigiannis, Spiro, Lotay, Jason D.

论文摘要

科比 - 萨拉蒙(Bryant-Salamon)构建了三个具有自律$ \ mathrm {g} _2 $的完整歧管的1-参数家族,它们在圆锥形上均不适用于整体$ \ mathrm {g} _2 $锥。对于这些家族,包括它们的渐近锥,我们通过渐近圆锥形和圆锥形奇异的共同体构造4倍的振动。我们表明,这些纤维是对$ \ Mathbb r^7 $的以下三种众所周知的共同体纤维的自然概括:4板的微不足道纤维,这是标准LEFSCHETZ纤维的产物,$ \ Mathbb C^3 $带有线条,以及Harvey-Lawson Coassociative纤维化。特别是,我们描述了在4键$ \ nathcal {s}^4 $上的反二偶2型形式的共同体纤维纤维,以及$ \ mathbb c \ mathbb c \ mathbb p^3 $上的圆锥r^4/\ {\ pm 1 \} $。我们将这些振动与超直的几何形状,唐纳森(Donaldson)在Kovalev-Lefschetz纤维上的工作,Harmonic 1形和乔伊斯 - Karigiannis构建自整体$ \ MATHRM {g} _2 _2 $ coplolds的构建,以及我们构建了这些firibles for for for for for for themiative thimbles'thimbles''thimbles''。

Bryant-Salamon constructed three 1-parameter families of complete manifolds with holonomy $\mathrm{G}_2$ which are asymptotically conical to a holonomy $\mathrm{G}_2$ cone. For each of these families, including their asymptotic cone, we construct a fibration by asymptotically conical and conically singular coassociative 4-folds. We show that these fibrations are natural generalizations of the following three well-known coassociative fibrations on $\mathbb R^7$: the trivial fibration by 4-planes, the product of the standard Lefschetz fibration of $\mathbb C^3$ with a line, and the Harvey-Lawson coassociative fibration. In particular, we describe coassociative fibrations of the bundle of anti-self-dual 2-forms over the 4-sphere $\mathcal{S}^4$, and the cone on $\mathbb C \mathbb P^3$, whose smooth fibres are $T^*\mathcal{S}^2$, and whose singular fibres are $\mathbb R^4/\{\pm 1\}$. We relate these fibrations to hypersymplectic geometry, Donaldson's work on Kovalev-Lefschetz fibrations, harmonic 1-forms and the Joyce--Karigiannis construction of holonomy $\mathrm{G}_2$ manifolds, and we construct vanishing cycles and associative "thimbles" for these fibrations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源