论文标题

与皮尔西内核相关的Fredholm决定因素的渐近学

Asymptotics of Fredholm determinant associated with the Pearcey kernel

论文作者

Dai, Dan, Xu, Shuai-Xia, Zhang, Lun

论文摘要

Pearcey内核是由随机矩阵理论引起的经典和通用的内核,它描述了特征值的局部统计数据,而限制的特征值则表现出尖尖的奇异性。它也出现在矩阵模型以外的各种统计物理模型中。我们考虑使用Pearcey内核在$ l^2 \ left(-s,s \右)$上作用的微量类类操作员的弗雷姆(Fredholm)决定因素。基于$ 3 \ times 3 $矩阵值的riemann-hilbert问题的最陡峭的下降分析,我们将弗雷德尔姆决定簇的渐近学作为$ s \ to +\ infty $,在随机矩阵理论的上下文中,这也被解释为大差距渐近差异。

The Pearcey kernel is a classical and universal kernel arising from random matrix theory, which describes the local statistics of eigenvalues when the limiting mean eigenvalue density exhibits a cusp-like singularity. It appears in a variety of statistical physics models beyond matrix models as well. We consider the Fredholm determinant of a trace class operator acting on $L^2\left(-s, s\right)$ with the Pearcey kernel. Based on a steepest descent analysis for a $3\times 3$ matrix-valued Riemann-Hilbert problem, we obtain asymptotics of the Fredholm determinant as $s\to +\infty$, which is also interpreted as large gap asymptotics in the context of random matrix theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源