论文标题
社交 - 瓦格达:通过Wasserstein图双注意网络通过互动感知轨迹预测
Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein Graph Double-Attention Network
论文作者
论文摘要
对于智能移动系统(例如自动驾驶汽车和社交机器人),对环境的有效理解和对周围动态障碍的准确轨迹预测是必不可少的,可以在高度互动和拥挤的场景中导航时实现安全和高质量的计划。由于场景演变中存在频繁的相互作用和不确定性,因此预测系统需要对不同实体进行关系推理,并为每个代理提供未来轨迹的分布。在本文中,我们提出了用于多机构轨迹预测的通用生成神经系统(称为社会 - 瓦格达),该预测通过将关系电感偏见与动态图表示并利用轨迹和场景上下文信息来实现明确的相互作用建模。我们还采用了应用于车辆轨迹预测的有效运动限制层,不仅可以确保物理可行性,还可以增强模型性能。在三个公共基准数据集中评估了拟议的系统以进行轨迹预测,在该数据集中,代理商涵盖了行人,骑自行车的人和道路车辆。实验结果表明,就预测准确性而言,我们的模型比各种基线方法的性能更好。
Effective understanding of the environment and accurate trajectory prediction of surrounding dynamic obstacles are indispensable for intelligent mobile systems (like autonomous vehicles and social robots) to achieve safe and high-quality planning when they navigate in highly interactive and crowded scenarios. Due to the existence of frequent interactions and uncertainty in the scene evolution, it is desired for the prediction system to enable relational reasoning on different entities and provide a distribution of future trajectories for each agent. In this paper, we propose a generic generative neural system (called Social-WaGDAT) for multi-agent trajectory prediction, which makes a step forward to explicit interaction modeling by incorporating relational inductive biases with a dynamic graph representation and leverages both trajectory and scene context information. We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction which not only ensures physical feasibility but also enhances model performance. The proposed system is evaluated on three public benchmark datasets for trajectory prediction, where the agents cover pedestrians, cyclists and on-road vehicles. The experimental results demonstrate that our model achieves better performance than various baseline approaches in terms of prediction accuracy.