论文标题

关于时间分数椭圆方程的解决方案的渐近行为,驱动了乘法白噪声

On the asymptotic behavior of solutions to time-fractional elliptic equations driven a multiplicative white noise

论文作者

Tuan, H. T.

论文摘要

本文致力于研究分数椭圆方程驱动乘法噪声。通过结合对称椭圆运算符的本本特征功能扩展方法,恒定解决方案的恒定公式的变化,用于标量随机分数差分方程,ITO的公式并建立了与lyapunov-Perron操作员相关的新的加权规范,该规范与解决方案的代表性定义了,我们显示了这些System systems symess sysems sarmears sarmeqors sarmears sarme nequars sarmequars sym sare nequar serm sare nequar serm sare nequar serm sards sarme nequar sysers sarme nequers的含义。结果,我们还证明了其解决方案的存在,独特性和收敛速度。

This paper devoted to study of fractional elliptic equations driven a multiplicative noise. By combining the eigenfunction expansion method for symmetry elliptic operators, the variation of constant formula for strong solutions to scalar stochastic fractional differential equations, Ito's formula and establishing a new weighted norm associated with a Lyapunov-Perron operator defined from this representation of solutions, we show the asymptotic behaviour of solutions to these systems in mean square sense. As a consequence, we also prove existence, uniqueness and the convergence rate of their solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源