论文标题
MCENET:用于混合流量中的均质代理轨迹预测的多封闭编码网络
MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory Prediction in Mixed Traffic
论文作者
论文摘要
城市混合交通区域(又称共享空间)的轨迹预测对于许多智能运输系统至关重要,例如自主驾驶的意图检测。但是,要在微观层面上预测异质道路代理(行人,骑自行车的人和车辆)的轨迹存在许多挑战。例如,在不同环境中,代理可以在与其他代理的复杂交互中选择多个合理的路径。为此,我们提出了一种名为Multi-Context编码网络(MCENET)的方法,该方法通过编码过去和未来场景上下文,交互上下文和运动信息来训练,以使用一组随机的潜在变量捕获未来轨迹的模式和变化。在推论时间,我们将目标药物的过去上下文和运动信息与潜在变量的采样相结合,以预测将来的多个现实轨迹。通过在不同场景的几个数据集上进行实验,我们的方法的表现优于一些最新的最新方法,用于在非常具有挑战性的环境中大幅度和更强大的交通轨迹预测。通过消融研究证明每种情况的影响是合理的。
Trajectory prediction in urban mixed-traffic zones (a.k.a. shared spaces) is critical for many intelligent transportation systems, such as intent detection for autonomous driving. However, there are many challenges to predict the trajectories of heterogeneous road agents (pedestrians, cyclists and vehicles) at a microscopical level. For example, an agent might be able to choose multiple plausible paths in complex interactions with other agents in varying environments. To this end, we propose an approach named Multi-Context Encoder Network (MCENET) that is trained by encoding both past and future scene context, interaction context and motion information to capture the patterns and variations of the future trajectories using a set of stochastic latent variables. In inference time, we combine the past context and motion information of the target agent with samplings of the latent variables to predict multiple realistic trajectories in the future. Through experiments on several datasets of varying scenes, our method outperforms some of the recent state-of-the-art methods for mixed traffic trajectory prediction by a large margin and more robust in a very challenging environment. The impact of each context is justified via ablation studies.