论文标题
偶极玻色 - 因斯坦冷凝水的超固体阶段的涡旋
Vortices in the supersolid phase of dipolar Bose-Einstein condensates
论文作者
论文摘要
预计涡旋存在于超胚膜中,但在实验上检测可能很困难,因为涡旋芯位于局部密度非常低的位置。我们在这里通过在$ t = 0 $ k的煎饼限制中对偶极玻璃晶体冷凝物(BEC)进行数值模拟来解决这个问题,并研究量化涡度对可以根据偶极和短距离相互作用的比率实现的相位的量化涡度的影响。通过增加该比率,系统以多原子“液滴”的有序排列形式进行自发密度调制。该调制阶段可以是“ Supersolid”(SS)或“正常固体”(NS)。在SS状态下,液滴浸入了低密度超流体的背景中,并且该系统具有有限的全局超流体分数,导致非经典旋转惯性。在NS状态下,没有这种超流体背景存在,全球超流体分数消失了。我们在这里提出了一个协议,以在偶极的调制阶段“将”“冷冻”到这样的阶段中创建涡旋阶段,以旋转涡旋式超氟(SF)状态。根据相互作用的强度,所得系统可以是SS或NS,可以区分“冻结”实验的这两个可能的结果,我们表明,在释放了径向谐波限制时,扩展的涡旋式固定SS SS的扩展SS显示出了表现出的质量量表,这些量子表现出表现出一种表现出对vortex lattex lattex latt sf sf sf sf of sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf的象征。单个液滴的径向膨胀。这种明显不同的行为可以用来证明旋转偶极冷凝物的超固定特征。
Vortices are expected to exist in a supersolid but experimentally their detection can be difficult because the vortex cores are localized at positions where the local density is very low. We address here this problem by performing numerical simulations of a dipolar Bose-Einstein Condensate (BEC) in a pancake confinement at $T=0$ K and study the effect of quantized vorticity on the phases that can be realized depending upon the ratio between dipolar and short-range interaction. By increasing this ratio the system undergoes a spontaneous density modulation in the form of an ordered arrangement of multi-atom "droplets". This modulated phase can be either a "supersolid" (SS) or a "normal solid" (NS). In the SS state droplets are immersed in a background of low-density superfluid and the system has a finite global superfluid fraction resulting in non-classical rotational inertia. In the NS state no such superfluid background is present and the global superfluid fraction vanishes. We propose here a protocol to create vortices in modulated phases of dipolar BEC by "freezing" into such phases a vortex-hosting superfluid (SF) state. The resulting system, depending upon the interactions strengths, can be either a SS or a NS To discriminate between these two possible outcome of a "freezing" experiment, we show that upon releasing of the radial harmonic confinement, the expanding vortex-hosting SS shows tell-tale quantum interference effects which display the symmetry of the vortex lattice of the originating SF, as opposed to the behavior of the NS which shows instead a ballistic radial expansion of the individual droplets. Such markedly different behavior might be used to prove the supersolid character of rotating dipolar condensates.