论文标题
在最小长度效果下,在黑洞周围混乱的运动
Chaotic Motion around a Black Hole under Minimal Length Effects
论文作者
论文摘要
我们使用Melnikov方法来鉴定地球运动中的混沌行为,这些运动受到Schwarzschild黑洞周围最小长度效应的扰动。与可集成的不受干扰的大地运动运动不同,我们的结果表明,扰动的同质轨道轨道是一种地球上连接到不稳定的圆形轨道与自身的地质轨道,从而使Smale Morseshoes混乱结构存在于相空间中的意义上。
We use the Melnikov method to identify chaotic behavior in geodesic motion perturbed by the minimal length effects around a Schwarzschild black hole. Unlike the integrable unperturbed geodesic motion, our results show that the perturbed homoclinic orbit, which is a geodesic joining the unstable circular orbit to itself, becomes chaotic in the sense that Smale horseshoes chaotic structure is present in phase space.