论文标题

舒伯特品种中通用的圆环闭合的多项式多项式

Poincare polynomials of generic torus orbit closures in Schubert varieties

论文作者

Lee, Eunjeong, Masuda, Mikiya, Park, Seonjeong, Song, Jongbaek

论文摘要

众所周知,$ g/b $ a $的标志品种$ g/b $中的通用圆环的闭合是一个定位品种及其繁殖性多项式与Eulerian多项式一致。在本文中,我们研究了$ g/b $的舒伯特品种中通用圆环闭合的繁殖性多项式。当舒伯特品种中的通用圆环轨道闭合是光滑的时,它的繁殖多项式已知与欧拉多项式的一定概括一致。我们将此结果扩展到任意的通用圆环轨道闭合,这不一定是光滑的。

The closure of a generic torus orbit in the flag variety $G/B$ of type $A$ is known to be a permutohedral variety and its Poincare polynomial agrees with the Eulerian polynomial. In this paper, we study the Poincare polynomial of a generic torus orbit closure in a Schubert variety in $G/B$. When the generic torus orbit closure in a Schubert variety is smooth, its Poincare polynomial is known to agree with a certain generalization of the Eulerian polynomial. We extend this result to an arbitrary generic torus orbit closure which is not necessarily smooth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源