论文标题

在随机增强图中的哈密顿周期的高力量

High powers of Hamiltonian cycles in randomly augmented graphs

论文作者

Antoniuk, Sylwia, Dudek, Andrzej, Reiher, Christian, Ruciński, Andrzej, Schacht, Mathias

论文摘要

我们研究了最小程度较大的图表中哈密顿周期的力量的存在,以随机的方式添加了一些其他边缘。对于所有整数,$ k \ geq1 $,$ r \ geq 0 $和$ \ ell \ geq(r+1)r $,对于任何$α> \ frac {k+1} $,我们显示添加$ o(n^{2-2-2/\ ell \ ell})$ n $ n $ n $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g。概率接近一个,存在$(k \ ell+r)$的存在 - 哈密顿周期的第三功率。特别是,对于$ r = 1 $和$ \ ell = 2 $,这意味着将$ o(n)$随机边缘添加到这样的图形$ g $已经确保了$(2k+1)$ - 汉密尔顿周期的power(由Nenadov和Trujić证明是独立的)。在这种情况下,对于$ k $,$ \ ell $和$ r $的其他几种选择,我们可以证明我们的结果在渐近上是最佳的。

We investigate the existence of powers of Hamiltonian cycles in graphs with large minimum degree to which some additional edges have been added in a random manner. For all integers $k\geq1$, $r\geq 0$, and $\ell\geq (r+1)r$, and for any $α>\frac{k}{k+1}$ we show that adding $O(n^{2-2/\ell})$ random edges to an $n$-vertex graph $G$ with minimum degree at least $αn$ yields, with probability close to one, the existence of the $(k\ell+r)$-th power of a Hamiltonian cycle. In particular, for $r=1$ and $\ell=2$ this implies that adding $O(n)$ random edges to such a graph $G$ already ensures the $(2k+1)$-st power of a Hamiltonian cycle (proved independently by Nenadov and Trujić). In this instance and for several other choices of $k$, $\ell$, and $r$ we can show that our result is asymptotically optimal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源