论文标题
语义树结构数据的端到端学习框架
A Framework for End-to-End Learning on Semantic Tree-Structured Data
论文作者
论文摘要
虽然通常以固定尺寸特征向量的形式研究了学习模型,但很少以这种形式找到现实世界数据。为了满足传统学习模型的基本要求,结构数据通常必须以手工制作的方式转换为固定长度向量,这很乏味,甚至可能蒙受信息损失。结构化数据的一种常见形式是我们称为“语义树结构”的内容,与以组成方式编码丰富的语义信息的数据相对应,例如在JavaScript对象符号(JSON)和可扩展标记语言(XML)中表达的数据。对于树结构的数据,已经研究了几种学习模型,以直接在原始树结构数据上工作,但是,此类学习模型仅限于特定的树 - 培养基或特定的树结构数据格式,例如合成树木。在本文中,我们提出了一个新颖的框架,用于对任意拓扑和异构数据类型的通用语义树结构数据的端到端学习,例如JSON,XML等表达的数据。由递归和经常性神经网络中的作品激励,我们开发了JSON格式框架的典范神经实现。我们在几个UCI基准数据集上评估了我们的方法,包括消融和数据效率研究以及玩具增强学习任务。实验结果表明,我们的框架与使用专用特征向量的标准模型的使用相当,甚至在数据的组成性质尤为重要的情况下,甚至超过了基线性能。 可以在https://github.com/endendcredits/json2vec下载基于JSON的实现我们框架的实现的源代码。
While learning models are typically studied for inputs in the form of a fixed dimensional feature vector, real world data is rarely found in this form. In order to meet the basic requirement of traditional learning models, structural data generally have to be converted into fix-length vectors in a handcrafted manner, which is tedious and may even incur information loss. A common form of structured data is what we term "semantic tree-structures", corresponding to data where rich semantic information is encoded in a compositional manner, such as those expressed in JavaScript Object Notation (JSON) and eXtensible Markup Language (XML). For tree-structured data, several learning models have been studied to allow for working directly on raw tree-structure data, However such learning models are limited to either a specific tree-topology or a specific tree-structured data format, e.g., synthetic parse trees. In this paper, we propose a novel framework for end-to-end learning on generic semantic tree-structured data of arbitrary topology and heterogeneous data types, such as data expressed in JSON, XML and so on. Motivated by the works in recursive and recurrent neural networks, we develop exemplar neural implementations of our framework for the JSON format. We evaluate our approach on several UCI benchmark datasets, including ablation and data-efficiency studies, and on a toy reinforcement learning task. Experimental results suggest that our framework yields comparable performance to use of standard models with dedicated feature-vectors in general, and even exceeds baseline performance in cases where compositional nature of the data is particularly important. The source code for a JSON-based implementation of our framework along with experiments can be downloaded at https://github.com/EndingCredits/json2vec.