论文标题
具有原子精度的过渡金属二甲基化合物超材料
Transition metal dichalcogenide metamaterials with atomic precision
论文作者
论文摘要
仅提取材料厚的材料的能力导致了石墨烯,单层过渡金属二分法(TMD)和其他重要的二维材料的发现。促进最先进的平地物理学的理解和实用性的下一步是研究此类二维材料的一维边缘,并控制边缘平面比。边缘通常表现出独特的特性,并且与平面和散装的属性截然不同。因此,控制它们允许设计具有合成边缘平面式特征的主要新材料,即TMD超材料。但是,尚未开发出以一种精确和系统的方式在实验上研究这些超材料的技术。在这里,我们报告了一种易于控制的各向异性湿蚀刻方法,该方法允许具有原子精度的TMD超材料的可扩展制造。我们表明,TMD可以沿着某些晶体学轴蚀刻,因此所获得的边缘在原子上是锋利的,并且仅曲折端端。这导致预定义和复杂性的六边形纳米结构,包括很少的纳米薄纳米骨和纳米插座。因此,该方法可以通过对结构的原子精确控制具有量身定制功能的广泛的TMD超材料的未来研究。
The ability to extract materials just a few atoms thick has led to discovery of graphene, monolayer transition metal dichalcogenides (TMDs), and other important two-dimensional materials. The next step in promoting understanding and utility of the flatland physics beyond the state-of-the-art is to study one-dimensional edges of such two-dimensional materials as well as to control the edge-plane ratio. Edges typically exhibit properties that are unique and distinctly different from those of planes and bulk. Thus, controlling them allows to design principally new materials with synthetic edge-plane-bulk characteristics, that is, TMD metamaterials. However, the enabling technology to study such metamaterials experimentally in a precise and systematic way has not yet been developed. Here we report a facile and controllable anisotropic wet etching method that allows scalable fabrication of TMD metamaterials with atomic precision. We show that TMDs can be etched along certain crystallographic axes, such that the obtained edges are atomically sharp and exclusively zigzag-terminated. This results in hexagonal nanostructures of predefined order and complexity, including few nanometer thin nanoribbons and nanojunctions. The method thus enables future studies of a broad range of TMD metamaterials with tailored functionality through atomically precise control of the structure.