论文标题

目标尖峰模式可以为复杂的时间任务带来高效且在生物学上合理的学习

Target spiking patterns enable efficient and biologically plausible learning for complex temporal tasks

论文作者

Muratore, Paolo, Capone, Cristiano, Paolucci, Pier Stanislao

论文摘要

人脑中的复发性尖峰神经网络(RSNN)学会在能耗方面非常有效地执行各种知觉,认知和运动任务,并且需要很少的例子。这激发了寻找RSNN的生物学启发的学习规则,以提高我们对大脑计算和人工智能效率的理解。已经提出了几种尖峰模型和学习规则,但是对于设计学习依赖于生物学上合理的机制并能够解决复杂的时间任务的RSNN仍然是一个挑战。在本文中,我们从简单的数学原理中得出了一项学习规则,该规则是突触的本地,即网络解决特定任务的可能性的最大化。我们提出了一种新型的基于目标的学习方案,其中使用了从可能性最大化的学习规则来模仿特定的尖峰模式,该模式将解决方案编码为复杂的时间任务。这种方法使学习非常快速,精确,表现优于RSNN的最新算法状态。我们展示了我们模型的能力解决了几个问题,例如学习多维轨迹并解决经典的时间XOR基准。最后,我们表明,除了保证时间和空间中的完整区域外,在线上的梯度上升近似允许在几乎没有介绍目标输出后学习。我们的模型可以应用于不同类型的生物神经元。分析得出的可塑性学习规则针对每个神经元模型,并且可以产生实验验证的理论预测。

Recurrent spiking neural networks (RSNN) in the human brain learn to perform a wide range of perceptual, cognitive and motor tasks very efficiently in terms of energy consumption and requires very few examples. This motivates the search for biologically inspired learning rules for RSNNs to improve our understanding of brain computation and the efficiency of artificial intelligence. Several spiking models and learning rules have been proposed, but it remains a challenge to design RSNNs whose learning relies on biologically plausible mechanisms and are capable of solving complex temporal tasks. In this paper, we derive a learning rule, local to the synapse, from a simple mathematical principle, the maximization of the likelihood for the network to solve a specific task. We propose a novel target-based learning scheme in which the learning rule derived from likelihood maximization is used to mimic a specific spiking pattern that encodes the solution to complex temporal tasks. This method makes the learning extremely rapid and precise, outperforming state of the art algorithms for RSNNs. We demonstrate the capacity of our model to tackle several problems like learning multidimensional trajectories and solving the classical temporal XOR benchmark. Finally, we show that an online approximation of the gradient ascent, in addition to guaranteeing complete locality in time and space, allows learning after very few presentations of the target output. Our model can be applied to different types of biological neurons. The analytically derived plasticity learning rule is specific to each neuron model and can produce a theoretical prediction for experimental validation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源