论文标题
在线学习中无公制的个人公平性
Metric-Free Individual Fairness in Online Learning
论文作者
论文摘要
我们研究一个在线学习问题,但要受个人公平的限制,这要求对类似的人进行类似的对待。与先前关于个人公平性的工作不同,我们不认为个人之间的相似性度量是已知的,也不假设这种措施采用某种参数形式。取而代之的是,我们利用审计师的存在,该审计师在不阐明定量措施的情况下发现公平违规。在每回合中,审计师都会检查学习者的决定,并试图识别一对由学习者不公平对待的人。我们提供了一个一般减少框架,将模型中的在线分类减少到标准的在线分类,这使我们能够利用现有的在线学习算法实现次线性遗憾和违反公平的数量。令人惊讶的是,在随机环境中,数据独立于分布绘制,我们还能够建立Pac式的公平性和准确性的概括保证(Rothblum and Yona [2018]),尽管只能获得非常有限的公平反馈形式。我们的公平概括在定性上与Rothblum和Yona [2018]的统一融合结合匹配,同时还提供了有意义的准确概括保证。我们的结果解决了Gillen等人的一个公开问题。 [2018]通过证明在未知个人公平限制下的在线学习即使没有假设基本相似性度量的强大参数形式也是可能的。
We study an online learning problem subject to the constraint of individual fairness, which requires that similar individuals are treated similarly. Unlike prior work on individual fairness, we do not assume the similarity measure among individuals is known, nor do we assume that such measure takes a certain parametric form. Instead, we leverage the existence of an auditor who detects fairness violations without enunciating the quantitative measure. In each round, the auditor examines the learner's decisions and attempts to identify a pair of individuals that are treated unfairly by the learner. We provide a general reduction framework that reduces online classification in our model to standard online classification, which allows us to leverage existing online learning algorithms to achieve sub-linear regret and number of fairness violations. Surprisingly, in the stochastic setting where the data are drawn independently from a distribution, we are also able to establish PAC-style fairness and accuracy generalization guarantees (Rothblum and Yona [2018]), despite only having access to a very restricted form of fairness feedback. Our fairness generalization bound qualitatively matches the uniform convergence bound of Rothblum and Yona [2018], while also providing a meaningful accuracy generalization guarantee. Our results resolve an open question by Gillen et al. [2018] by showing that online learning under an unknown individual fairness constraint is possible even without assuming a strong parametric form of the underlying similarity measure.