论文标题
在手性跨膜和双曲线材料之间的界面上的生物分子传感
Biomolecular sensing at the interface between chiral metasurfaces and hyperbolic metamaterials
论文作者
论文摘要
近年来,基于在纳米尺度上控制光质相互作用的生物医学应用,为生物医学应用设计和制造功能性纳米材料做出了重大努力。在许多其他人造材料中,双曲线分散剂超材料可以通过其光学常数极端各向异性而访问前所未有的物理效应和机制。双曲线超材料(HMM)的未结合表面能够支撑几乎无限的状态密度和电磁场的超高限制,从而使光和极端的感应特性获得了完美的吸收。基于等离子超材料的光学传感器技术在临床诊断领域提供了重要的机会,尤其是在高度稀释溶液中检测低分子量的生物分子。在这种情况下,我们提出了一项计算工作,旨在设计基于双曲线超材料的生物传感平台,以支持与平面外手性跨膜集成的高度狭窄的散装等离子体模式。螺旋性手性超表面的作用是多种多样的:i)作为增加传入光的动量,以线性和圆形极化的光激发等离子体传感模式的动量; ii)作为平面外扩展传感表面,以捕获靶向分析物,从而从基板上捕获扩散极限; iii)作为一种易变的手性纳米结构,在循环极化反射光上具有增强的感应性能。
In recent years significant efforts have been made to design and fabricate functional nanomaterials for biomedical applications based on the control of light matter interaction at the nanometer scale. Among many other artificial materials, hyperbolic dispersion metamaterials allow to access unprecedented physical effects and mechanisms due to the extreme anisotropy of their optical constants. The unbound isofrequency surface of hyperbolic metamaterials (HMMs) enable the possibility to support a virtually infinite density of states and ultra-high confinement of electromagnetic fields, allowing perfect absorption of light and extreme sensing properties. Optical sensor technology based on plasmonic metamaterials offers significant opportunities in the field of clinical diagnostics, particularly for the detection of low-molecular-weight biomolecules in highly diluted solutions. In this context, we present a computational effort to engineer a biosensing platform based on hyperbolic metamaterials, supporting highly confined bulk plasmon modes integrated with out-of-plane chiral metasurfaces. The role of the helicoidal chiral metasurface is manifold: i) as a diffractive element to increase the momentum of the incoming light to excite the plasmon sensing modes with linearly and circularly polarized light; ii) as out-of-plane extended sensing surface to capture target analytes away from the substrate thereby the diffusion limit; iii) as a plamonic chiral nanostructure with enhanced sensing performance over circularly polarized reflectance light.