论文标题

减去紧凑的二进制前景源以揭示原始重力波背景

Subtracting compact binary foreground sources to reveal primordial gravitational-wave backgrounds

论文作者

Sachdev, Surabhi, Regimbau, Tania, Sathyaprakash, B. S.

论文摘要

检测早期宇宙期过渡期间产生的原始重力波背景是未来基于地面检测器的关键科学目标。紧凑型二元合并的速度是如此之大,以至于它们的宇宙学人群产生了混乱的背景,可以化妆潜在的原始随机背景。在本文中,我们研究了当前和未来检测器解决混乱背景以揭示有趣的原始背景的能力。当前的Ligo和处女座的检测器网络以及即将到来的Kagra和Ligo-India将无法解决宇宙学紧凑的二元源人群及其对随机背景的敏感性将受这些来源的混淆背景的限制。我们发现,宇宙资源管理器和爱因斯坦望远镜的三个(和五)三代(3G)探测器的网络将解决由二进制黑洞产生的混乱背景,仅尚未分解约0.013 \%(分别为0.00075 \%);相比之下,二进制中子星源的多达25 \%(分别为7.7 \%)仍未解决。因此,二进制黑洞人群可能不会限制观察原始背景,但是二进制中子星人群将将3G检测器的敏感性限制为$ω_ {\ rm GW} \ sim 10^{ - 11} $在10 Hz处(分别为10 hz)($ gw} _ {\ rm gw} $ sim sim sim $ sim 10^ - $ sim 10^ - \ 12^ - $ 10^ -

Detection of primordial gravitational-wave backgrounds generated during the early universe phase transitions is a key science goal for future ground-based detectors. The rate of compact binary mergers is so large that their cosmological population produces a confusion background that could masquerade the detection of potential primordial stochastic backgrounds. In this paper we study the ability of current and future detectors to resolve the confusion background to reveal interesting primordial backgrounds. The current detector network of LIGO and Virgo and the upcoming KAGRA and LIGO-India will not be able to resolve the cosmological compact binary source population and its sensitivity to stochastic background will be limited by the confusion background of these sources. We find that a network of three (and five) third generation (3G) detectors of Cosmic Explorer and Einstein Telescope will resolve the confusion background produced by binary black holes leaving only about 0.013\% (respectively, 0.00075\%) unresolved; in contrast, as many as 25\% (respectively, 7.7\%) of binary neutron star sources remain unresolved. Consequently, the binary black hole population will likely not limit observation of primordial backgrounds but the binary neutron star population will limit the sensitivity of 3G detectors to $Ω_{\rm GW} \sim 10^{-11}$ at 10 Hz (respectively, $Ω_{\rm GW} \sim 3\times 10^{-12}$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源