论文标题
反射安排和遏制问题的单一基因座
Singular loci of reflection arrangements and the containment problem
论文作者
论文摘要
本文提供了对对称性在研究多项式函数在代数品种上消失至高阶的作用的见解。我们研究的品种是投影空间中超平面布置的单数基因座,重点是由复杂反射组引起的布置。我们为定义这些奇异基因座和研究这些理想的普通和符号能力之间的根源和研究遏制的根本理想提供了最小的方程组集。
This paper provides insights into the role of symmetry in studying polynomial functions vanishing to high order on an algebraic variety. The varieties we study are singular loci of hyperplane arrangements in projective space, with emphasis on arrangements arising from complex reflection groups. We provide minimal sets of equations for the radical ideals defining these singular loci and study containments between the ordinary and symbolic powers of these ideals.