论文标题

解决方案歧管及其统计应用

Solution manifold and Its Statistical Applications

论文作者

Chen, Yen-Chi

论文摘要

解决方案歧管是$ d $维空间中的积分,满足$ s <d $的$ s $方程的系统。解决方案歧管发生在几个统计问题中,包括假设检验,弯曲的指数家族,约束混合模型,部分识别和非参数集估计。我们通过理论和算法分析解决方案歧管。就理论而言,我们得出了五个有用的结果:平滑度定理,稳定性定理(意味着插入式估计器的一致性),梯度流的收敛性,局部中心歧管定理以及梯度下降算法的收敛性。为了在数值上近似溶液歧管,我们提出了一种蒙特卡洛梯度下降算法。在可能性推断的情况下,我们设计了一种多种约束最大化过程,以在歧管上找到最大似然估计器。我们还开发了一种近似于解决方案歧管上定义的后验分布的方法。

A solution manifold is the collection of points in a $d$-dimensional space satisfying a system of $s$ equations with $s<d$. Solution manifolds occur in several statistical problems including hypothesis testing, curved-exponential families, constrained mixture models, partial identifications, and nonparametric set estimation. We analyze solution manifolds both theoretically and algorithmically. In terms of theory, we derive five useful results: the smoothness theorem, the stability theorem (which implies the consistency of a plug-in estimator), the convergence of a gradient flow, the local center manifold theorem and the convergence of the gradient descent algorithm. To numerically approximate a solution manifold, we propose a Monte Carlo gradient descent algorithm. In the case of likelihood inference, we design a manifold constraint maximization procedure to find the maximum likelihood estimator on the manifold. We also develop a method to approximate a posterior distribution defined on a solution manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源