论文标题
使用tableGraphnet对表格数据进行可解释的深层建模
Explainable Deep Modeling of Tabular Data using TableGraphNet
论文作者
论文摘要
关于解释性的绝大多数研究都集中在解释后而不是可解释的建模上。也就是说,一个解释模型是为了解释一个复杂的黑匣子模型,其唯一目的是实现最高的性能。在某种程度上,这种趋势可能是由于误解认为解释性和准确性之间存在权衡的误解。此外,以游戏理论为基础的塑造价值观的相应工作也为各种机器学习模型(包括深度学习模型)的更好近似值提供了新的解释后研究。我们提出了一种新的体系结构,该架构本质上以添加特征属性的形式产生可解释的预测。我们的方法学习数据集中每个记录的图表表示。然后从图中得出以属性为中心的特征,并将其馈入贡献深度设置模型以产生最终预测。我们表明,我们的可解释模型达到了与黑匣子模型相同的性能水平。最后,我们提供了一种增强的模型训练方法,该方法利用丢失属性并产生高水平的一致性(按照外观值的要求),而不会丧失准确性。
The vast majority of research on explainability focuses on post-explainability rather than explainable modeling. Namely, an explanation model is derived to explain a complex black box model built with the sole purpose of achieving the highest performance possible. In part, this trend might be driven by the misconception that there is a trade-off between explainability and accuracy. Furthermore, the consequential work on Shapely values, grounded in game theory, has also contributed to a new wave of post-explainability research on better approximations for various machine learning models, including deep learning models. We propose a new architecture that inherently produces explainable predictions in the form of additive feature attributions. Our approach learns a graph representation for each record in the dataset. Attribute centric features are then derived from the graph and fed into a contribution deep set model to produce the final predictions. We show that our explainable model attains the same level of performance as black box models. Finally, we provide an augmented model training approach that leverages the missingness property and yields high levels of consistency (as required for the Shapely values) without loss of accuracy.