论文标题
2016年至2019年的Keck Array和Bicep3 CMB极化器的光学表征
Optical characterization of the Keck Array and BICEP3 CMB Polarimeters from 2016 to 2019
论文作者
论文摘要
二头肌/凯克实验(BK)是一系列小型折射望远镜,观察来自南极的度尺度宇宙微波背景(CMB)极化,以寻找原始的$ b $ mmode签名。该$ b $ mmode信号来自与CMB相互作用的原始引力波,并且具有张量与刻录比$ r $ $ r $的振幅参数。自2016年以来,Bicep3和Keck阵列一直在观察4800个天线耦合的过渡边缘传感器探测器,频率带横跨95、150、220和270 GHz。在这里,我们介绍了2016年至2019年的这些接收器的光学性能,包括用原位测量的远场梁,并通过使用田间可剥削的傅立叶傅立叶变换光谱仪测量的切碎的热源和仪器频谱响应进行了改进。作为一对差异实验,必须控制的重要系统是在共同置换的正交极化检测器之间的差异束响应。我们生成人均远场梁图和相应的差异不匹配,用于估计我们CMB图中的温度到偏振泄漏,并就检测器和光学制造提供反馈。使用改进的低水平梁图分析技术估算了此处介绍的差异光束参数,包括有效去除非高斯噪声以及改进的空间遮罩。这些技术有助于最大程度地减少光束分析中的系统不确定性,目的是限制温度到极化泄漏引起的$ r $ $ r $的偏差,以使统计不确定性为基础。这是必不可少的,因为我们在下一代CMB实验中发展到更高的检测器计数。
The BICEP/Keck experiment (BK) is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background (CMB) polarization from the South Pole in search of a primordial $B$-mode signature. This $B$-mode signal arises from primordial gravitational waves interacting with the CMB, and has amplitude parametrized by the tensor-to-scalar ratio $r$. Since 2016, BICEP3 and the Keck Array have been observing with 4800 total antenna-coupled transition-edge sensor detectors, with frequency bands spanning 95, 150, 220, and 270 GHz. Here we present the optical performance of these receivers from 2016 to 2019, including far-field beams measured in situ with an improved chopped thermal source and instrument spectral response measured with a field-deployable Fourier Transform Spectrometer. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We generate per-detector far-field beam maps and the corresponding differential beam mismatch that is used to estimate the temperature-to-polarization leakage in our CMB maps and to give feedback on detector and optics fabrication. The differential beam parameters presented here were estimated using improved low-level beam map analysis techniques, including efficient removal of non-Gaussian noise as well as improved spatial masking. These techniques help minimize systematic uncertainty in the beam analysis, with the goal of constraining the bias on $r$ induced by temperature-to-polarization leakage to be subdominant to the statistical uncertainty. This is essential as we progress to higher detector counts in the next generation of CMB experiments.