论文标题
动态如何限制一般概率理论中的概率
How dynamics constrains probabilities in general probabilistic theories
论文作者
论文摘要
我们引入了一个一般框架,用于分析一般概率理论,该理论强调了系统的动力学和概率结构之间的区别。动力学结构是纯状态的集合以及可逆动力学的作用,而概率结构决定了测量和结果概率。对于动态组和稳定器子组形成gelfand对的及物动力学结构,我们表明所有概率结构都是刚性的(不能无限地变形),并且与动态组的球形表示一对一。当动力学结构是由单一群体作用的复杂的格拉曼(Grassmann)歧管时,我们应用我们的方法来对所有概率结构进行分类。这是对量子理论的概括,在这种量子理论中,纯状态而不是由复杂矢量空间的一维子空间代表,而是由大于一个的固定维度的子空间表示。我们还表明,具有紧凑型两点均匀的动力结构的系统(即,具有给定距离的每对纯状态可以可逆地转换为具有相同距离的任何其他纯状态),其中包括对应于Euclidean Jordan代数对应的系统,所有系统都具有刚性概率结构。
We introduce a general framework for analysing general probabilistic theories, which emphasises the distinction between the dynamical and probabilistic structures of a system. The dynamical structure is the set of pure states together with the action of the reversible dynamics, whilst the probabilistic structure determines the measurements and the outcome probabilities. For transitive dynamical structures whose dynamical group and stabiliser subgroup form a Gelfand pair we show that all probabilistic structures are rigid (cannot be infinitesimally deformed) and are in one-to-one correspondence with the spherical representations of the dynamical group. We apply our methods to classify all probabilistic structures when the dynamical structure is that of complex Grassmann manifolds acted on by the unitary group. This is a generalisation of quantum theory where the pure states, instead of being represented by one-dimensional subspaces of a complex vector space, are represented by subspaces of a fixed dimension larger than one. We also show that systems with compact two-point homogeneous dynamical structures (i.e. every pair of pure states with a given distance can be reversibly transformed to any other pair of pure states with the same distance), which include systems corresponding to Euclidean Jordan Algebras, all have rigid probabilistic structures.