论文标题

边缘计算中数据异质性的鲁棒性分析

Robustness analytics to data heterogeneity in edge computing

论文作者

Qian, Jia, Hansen, Lars Kai, Fafoutis, Xenofon, Tiwari, Prayag, Pandey, Hari Mohan

论文摘要

联合学习是一个框架,它可以在远程放置的集中服务器上共同训练模型\ textit {},但\ textit {note}需要访问存储在分布式计算机中的数据。一些工作假设从边缘设备生成的数据是从共同种群分布中相同和独立采样的。但是,这种理想的抽样在许多情况下可能并不现实。同样,基于内在代理的模型(例如主动采样方案)可能会导致高度偏差的采样。因此,一个迫在眉睫的问题是,联邦学习的强大偏见是如何偏向抽样的?在这项工作中,\ footNote {\ url {https://github.com/jiaqian/robustness_of_fl}},我们实验研究了两个这样的情况。首先,我们研究了一个集中式分类器,这些分类器汇总了一系列本地分类器,这些分类器培训具有具有分类异质性的数据。其次,我们研究了一个分类器,这些分类符从通过数据的积极采样培训的本地分类器集合中进行了汇总。在两种情况下,我们都提供证据表明,当适当选择本地培训和通信频率时,联合学习对数据异质性是可靠的。

Federated Learning is a framework that jointly trains a model \textit{with} complete knowledge on a remotely placed centralized server, but \textit{without} the requirement of accessing the data stored in distributed machines. Some work assumes that the data generated from edge devices are identically and independently sampled from a common population distribution. However, such ideal sampling may not be realistic in many contexts. Also, models based on intrinsic agency, such as active sampling schemes, may lead to highly biased sampling. So an imminent question is how robust Federated Learning is to biased sampling? In this work\footnote{\url{https://github.com/jiaqian/robustness_of_FL}}, we experimentally investigate two such scenarios. First, we study a centralized classifier aggregated from a collection of local classifiers trained with data having categorical heterogeneity. Second, we study a classifier aggregated from a collection of local classifiers trained by data through active sampling at the edge. We present evidence in both scenarios that Federated Learning is robust to data heterogeneity when local training iterations and communication frequency are appropriately chosen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源