论文标题
正常函数的非线性schrödinger方程:ii。申请利用刺耳的不平等现象
The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities
论文作者
论文摘要
在本文中,我们反驳了部分猜想,并在同名不平等中最佳常数。我们证明,当schrödinger运营商的特征值$-δ+v(x)$被升级给功率$κ$时,当$κ> \ max(0,2-d-d/2)在空间尺寸$ d \ egeq1 $中,从未给出$-Δ+v(x)$。另外,当$κ\ geq1 $中,我们证明,对于具有有限的特征值有限的潜力,从未达到这种最佳常数。获得第一个结果的方法是仔细计算两个Gagliardo-Nirenberg优化器之间的指数小相互作用。对于第二个结果,我们以与这项工作的第一部分相同的精神来研究Lieb-Thirring不平等的双重版本(D. Gontier,M。Lewin&F.Q。Nazar,Arxiv:2002.04963)。在一个不同但相关的方向上,我们还表明,立方非线性schrödinger方程在1D中不接受正直的基态,以多个函数。
In this paper we disprove part of a conjecture of Lieb and Thirring concerning the best constant in their eponymous inequality. We prove that the best Lieb-Thirring constant when the eigenvalues of a Schrödinger operator $-Δ+V(x)$ are raised to the power $κ$ is never given by the one-bound state case when $κ>\max(0,2-d/2)$ in space dimension $d\geq1$. When in addition $κ\geq1$ we prove that this best constant is never attained for a potential having finitely many eigenvalues. The method to obtain the first result is to carefully compute the exponentially small interaction between two Gagliardo-Nirenberg optimisers placed far away. For the second result, we study the dual version of the Lieb-Thirring inequality, in the same spirit as in Part I of this work (D. Gontier, M. Lewin & F.Q. Nazar, arXiv:2002.04963). In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function.