论文标题
多组辐射扩散方程的代数多移民块预处理
Algebraic multigrid block preconditioning for multi-group radiation diffusion equations
论文作者
论文摘要
本文着重于基于经典代数多移民来开发和研究有效的块预处理,用于由完全耦合和隐式中心的以细胞为中心的有限量批量离散化的多组辐射扩散方程的大规模稀疏线性系统,该方程可以重新限制$($ g+g+g+2)$ 2)组。预处理技术基于单层的经典代数多机方法,基于物理变化的粗化两级算法和两种类型的块Schur补体预处理。经典的代数多机应用用于求解最后三个块预处理中出现的子系统。进一步探索了耦合强度和对角线优势以提高性能。我们使用来自胶囊内爆模拟的代表性一组和二十一组线性系统来测试所提出方法的鲁棒性,效率,强和弱的平行缩放特性。数值结果表明,块预处理会导致网格和问题无关的收敛,并在算法上和并行地均匀地扩展。
The paper focuses on developing and studying efficient block preconditioners based on classical algebraic multigrid for the large-scale sparse linear systems arising from the fully coupled and implicitly cell-centered finite volume discretization of multi-group radiation diffusion equations, whose coefficient matrices can be rearranged into the $(G+2)\times(G+2)$ block form, where $G$ is the number of energy groups. The preconditioning techniques are based on the monolithic classical algebraic multigrid method, physical-variable based coarsening two-level algorithm and two types of block Schur complement preconditioners. The classical algebraic multigrid is applied to solve the subsystems that arise in the last three block preconditioners. The coupling strength and diagonal dominance are further explored to improve performance. We use representative one-group and twenty-group linear systems from capsule implosion simulations to test the robustness, efficiency, strong and weak parallel scaling properties of the proposed methods. Numerical results demonstrate that block preconditioners lead to mesh- and problem-independent convergence, and scale well both algorithmically and in parallel.