论文标题

带有随机重置的模型

Ising model with stochastic resetting

论文作者

Magoni, Matteo, Majumdar, Satya N., Schehr, Gregory

论文摘要

我们研究了Ising模型的固定特性,尽管Glauber Dynamics在温度下向其在温度下朝着其平衡状态发展,但随机重置其固定的初始配置,并以磁化$ m_0 $以恒定的速率$ r $ $ $ $ $ $ $ $ $ $ $ $。重置打破详细的平衡,并将系统驱动到非平衡的固定状态,在该状态下,磁力化获得了非平凡的分布,从而导致$(t,r)$平面的丰富相图。我们在二维中支持的一维和当前缩放参数中精确地建立了这些结果。我们表明,重置产生了$ r> r> r> r^*(t)$和$ t> t_c $的$(t,r)$平面中的小说“伪 - 弗罗”阶段,其中$ r^*(t)$是分隔伪佛罗级阶段的交叉线。该伪 - 弗罗相的特征是非零典型磁化和接近磁化分布的$ m = 0 $的消失间隙。

We study the stationary properties of the Ising model that, while evolving towards its equilibrium state at temperature $T$ according to the Glauber dynamics, is stochastically reset to its fixed initial configuration with magnetisation $m_0$ at a constant rate $r$. Resetting breaks detailed balance and drives the system to a non-equilibrium stationary state where the magnetisation acquires a nontrivial distribution, leading to a rich phase diagram in the $(T,r)$ plane. We establish these results exactly in one-dimension and present scaling arguments supported by numerical simulations in two-dimensions. We show that resetting gives rise to a novel "pseudo-ferro" phase in the $(T,r)$ plane for $r > r^*(T)$ and $T>T_c$ where $r^*(T)$ is a crossover line separating the pseudo-ferro phase from a paramagnetic phase. This pseudo-ferro phase is characterised by a non-zero typical magnetisation and a vanishing gap near $m=0$ of the magnetisation distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源