论文标题
深HR:在现实条件下从面部视频中得出快速心率的估计
Deep-HR: Fast Heart Rate Estimation from Face Video Under Realistic Conditions
论文作者
论文摘要
本文提出了一种新颖的远程心率(HR)估计方法。最近的研究证明,心脏的血液泵送与面部像素的强烈颜色高度相关,令人惊讶的是可用于远程HR估计。研究人员成功地为这项任务提出了几种方法,但是在现实情况下使其在计算机视觉社区中仍然是一个艰巨的问题。此外,学会在具有非常有限的带注释样本的数据集上解决这样的复杂任务是不合理的。因此,研究人员不喜欢将深度学习方法用于此问题。在本文中,我们提出了一种简单而有效的方法,通过简化从复杂的任务到从非常相关的表示到人力资源学习的人力资源估计来使深神经网络(DNN)的优势受益。受到以前的工作的启发,我们学习了一个名为前端(FE)的组件,以提供面部视频的歧视性表示,然后学会了一个深度的深层回归自动编码器,因为后端(BE)被学会了将FE表示映射到HR。信息表示的回归任务很简单,并且可以在有限的培训样本上有效地学习。除此之外,要更加准确并在低质量的视频上效果很好,对两个深层编码器网络进行了训练,以完善FE的输出。我们还引入了一个具有挑战性的数据集(HR-D),以表明我们的方法可以在现实的条件下有效地工作。 HR-D和MAHNOB数据集的实验结果证实,我们的方法可以作为实时方法运行,并比最先进的方法更好地估计平均HR。
This paper presents a novel method for remote heart rate (HR) estimation. Recent studies have proved that blood pumping by the heart is highly correlated to the intense color of face pixels, and surprisingly can be utilized for remote HR estimation. Researchers successfully proposed several methods for this task, but making it work in realistic situations is still a challenging problem in computer vision community. Furthermore, learning to solve such a complex task on a dataset with very limited annotated samples is not reasonable. Consequently, researchers do not prefer to use the deep learning approaches for this problem. In this paper, we propose a simple yet efficient approach to benefit the advantages of the Deep Neural Network (DNN) by simplifying HR estimation from a complex task to learning from very correlated representation to HR. Inspired by previous work, we learn a component called Front-End (FE) to provide a discriminative representation of face videos, afterward a light deep regression auto-encoder as Back-End (BE) is learned to map the FE representation to HR. Regression task on the informative representation is simple and could be learned efficiently on limited training samples. Beside of this, to be more accurate and work well on low-quality videos, two deep encoder-decoder networks are trained to refine the output of FE. We also introduce a challenging dataset (HR-D) to show that our method can efficiently work in realistic conditions. Experimental results on HR-D and MAHNOB datasets confirm that our method could run as a real-time method and estimate the average HR better than state-of-the-art ones.