论文标题
具有边界和内部能量的科赫雪花域的离散化
Discretization of the Koch Snowflake Domain with Boundary and Interior Energies
论文作者
论文摘要
我们研究了Koch雪花域上的Dirichlet形式的离散化及其与内部和边界都可以支持正能的特性的边界。我们计算特征值和本征函数,并通过修改Filoche和Mayboroda的论点来证明高能本征函数在边界上的定位。还讨论了Hölder的连续性和算法均匀近似。
We study the discretization of a Dirichlet form on the Koch snowflake domain and its boundary with the property that both the interior and the boundary can support positive energy. We compute eigenvalues and eigenfunctions, and demonstrate the localization of high energy eigenfunctions on the boundary via a modification of an argument of Filoche and Mayboroda. Hölder continuity and uniform approximation of eigenfunctions are also discussed.