论文标题
关于最大Cohen-Macaulay模块的定理
A theorem about maximal Cohen-Macaulay modules
论文作者
论文摘要
它显示在本地强烈的$ f $ regratular戒指中退出自然数$ e_0 $,因此,如果$ m $是有限生成的最大Cohen-Macaulay模块,则在Frobenius Endomorphism的$ e_0 $ thterate下,$ M $的推动力为$ m $,其中包含免费的销售。因此,局部强烈的$ f $ groumard环的除数级组的扭转子组是有限的。
It is shown in a local strongly $F$-regular ring there exits natural number $e_0$ so that if $M$ is any finitely generated maximal Cohen-Macaulay module then the pushforward of $M$ under the $e_0$th iterate of the Frobenius endomorphism contains a free summand. Consequently, the torsion subgroup of the divisor class group of a local strongly $F$-regular ring is finite.