论文标题
使用偶氮苯单层的光学上可调微孔子
Optically tunable microresonator using an azobenzene monolayer
论文作者
论文摘要
可拍摄的有机分子可以通过外部光刺激进行可逆的结构变化。这些光学控制的分子已用于智能聚合物的开发,光光膜的光学写作以及甚至可控的体内药物释放。作为结构上最简单的照片开关类别,偶氮烯已成为最普遍,良好的特征和实现的有机分子开关。鉴于它们可预测的响应,他们非常适合创建一个全面控制的开关。但是,制造单层光学设备仅由偶氮苯组成,同时保持照片处理功能是挑战性的。在这项工作中,我们将集成的光子学与光学切换有机分子相结合,以创建光学控制的集成设备。用偶氮苯衍生物的单层功能化二氧化硅环谐振腔。功能化后,加载的腔Q高于100,000。当450 nm的光耦合到空腔共振中时,偶氮苯同构从反异构体到顺式异构体,诱导了折射率变化。由于腔的谐振波长受索引的控制,因此谐振波长并联变化。在1300 nm的探针波长下,波长偏移取决于450 nm光的持续时间和强度以及设备表面上偶氮苯函数组的密度,提供了多个控制机制。使用这种可拍摄的设备,证明了近IIR中的共振频率调整多达60%的自由光谱范围。调整的动力学与光谱和椭圆测量以及有限元方法计算相一致。
Photoswitchable organic molecules can undergo reversible structural changes with an external light stimulus. These optically controlled molecules have been used in the development of smart polymers, optical writing of grating films, and even controllable in-vivo drug release. Being the simplest class of photoswitches in terms of structure, azobenzenes have become the most ubiquitous, well-characterized, and implemented organic molecular switch. Given their predictable response, they are ideally suited to create an all-optically controlled switch. However, fabricating a monolithic optical device comprised solely from azobenzene while maintaining the photoswitching functionality is challenging. In this work, we combine integrated photonics with optically switchable organic molecules to create an optically controlled integrated device. A silica toroidal resonant cavity is functionalized with a monolayer of an azobenzene derivative. After functionalization, the loaded cavity Q is above 100,000. When 450 nm light is coupled into cavity resonance, the azobenzene isomerizes from trans-isomer to cis-isomer, inducing a refractive index change. Because the resonant wavelength of the cavity is governed by the index, the resonant wavelength changes in parallel. At the probe wavelength of 1300 nm, the wavelength shift is determined by the duration and intensity of the 450 nm light and the density of azobenzene functional groups on the device surface, providing multiple control mechanisms. Using this photoswitchable device, resonance frequency tuning as far as sixty percent of the cavity free spectral range in the near-IR is demonstrated. The kinetics of the tuning are in agreement with spectroscopic and ellipsometry measurements coupled with finite element method calculations.