论文标题

(全息)激发状态的模块化哈密顿量

Modular Hamiltonian for (holographic) excited states

论文作者

Arias, Raúl, Botta-Cantcheff, Marcelo, Martinez, Pedro J., Zarate, Juan F.

论文摘要

在这项工作中,我们研究了一个激动人心的状态的tomita-takesaki结构,在强烈耦合的CFT中 - 在$ n $ - 在$ n $中,对应于渐近广告时空几何形状中的相干状态。我们计算了与这些激发态在Rindler楔形中的这些激发态相关的模块化流量和模块化的哈密顿量,并用于球形纠缠的表面。使用全息图,可以计算散装模块化流程并为这些情况构建tomita-takesaki理论。我们还讨论了大容量中纠缠区域的概括,以及如何在大N近似中估算模块化的哈密顿量。最后,我们基于BDHM处方提供了一个全息公式,以计算相应的CFT代数中运算符的模块化演化。

In this work we study the Tomita-Takesaki construction for a family of excited states that, in a strongly coupled CFT - at large $N$-, correspond to coherent states in an asymptotically AdS spacetime geometry. We compute the modular flow and modular Hamiltonian associated to these excited states in the Rindler wedge and for a ball shaped entangling surface. Using holography, one can compute the bulk modular flow and construct the Tomita-Takesaki theory for these cases. We also discuss generalizations of the entanglement regions in the bulk and how to estimate the modular Hamiltonian in a large N approximation. Finally we present a holographic formula, based on the BDHM prescription, to compute the modular evolution of operators in the corresponding CFT algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源