论文标题

混合式凳子:一种自洽的算法,可以同时使用强和弱透明的星系簇建模

hybrid-Lenstool: A self-consistent algorithm to model galaxy clusters with strong- and weak-lensing simultaneously

论文作者

Niemiec, Anna, Jauzac, Mathilde, Jullo, Eric, Limousin, Marceau, Sharon, Keren, Kneib, Jean-Paul, Natarajan, Priyamvada, Richard, Johan

论文摘要

我们提出了一种新的Galaxy群集镜头建模方法Hybrid-LenStool,该方法在公开建模软件Lenstool中实现。 Hybrid-LenStool结合了一种参数方法,以建模集群的核心,以及一种非参数(自由形式)方法来对郊区进行建模。 Hybrid-LenStool同时(联合拟合)同时优化了强和弱透明的约束,从而对所有尺度上的群集质量分布进行了自洽的重建。为了演示新算法的功能,我们在模拟群集上对其进行了测试。与以前的顺序拟合方法相比,杂种式储物可产生更准确的重建质量分布,其中参数模型和非参数模型均被连续优化。实际上,我们使用模拟群集显示,用顺序拟合偏差重建的质量密度曲线在所有尺度上都呈$2-3σ$,而关节拟合的概况则在真实值的$1-1.5σ$之内。对于恢复利用群集镜头的质量分布以及簇作为宇宙学探针的所有应用而言,这种准确性的增长是结果。最后,我们发现,联合拟合方法比顺序拟合方法产生内部密度曲线的浅斜率,从而揭示了先前的镜头研究中可能的偏见。

We present a new galaxy cluster lens modeling approach, hybrid-Lenstool, that is implemented in the publicly available modeling software Lenstool. hybrid-Lenstool combines a parametric approach to model the core of the cluster, and a non-parametric (free-form) approach to model the outskirts. hybrid-Lenstool optimizes both strong- and weak-lensing constraints simultaneously (Joint-Fit), providing a self-consistent reconstruction of the cluster mass distribution on all scales. In order to demonstrate the capabilities of the new algorithm, we tested it on a simulated cluster. hybrid-Lenstool yields more accurate reconstructed mass distributions than the former Sequential-Fit approach where the parametric and the non-parametric models are optimized successively. Indeed, we show with the simulated cluster that the mass density profile reconstructed with a Sequential-Fit deviates form the input by $2-3σ$ at all scales while the Joint-Fit gives a profile that is within $1-1.5σ$ of the true value. This gain in accuracy is consequential for recovering mass distributions exploiting cluster lensing and therefore for all applications of clusters as cosmological probes. Finally we found that the Joint-Fit approach yields shallower slope of the inner density profile than the Sequential-Fit approach, thus revealing possible biases in previous lensing studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源