论文标题
使用CodeEpneat和Keras的神经网络体系结构的神经进化
Neuroevolution of Neural Network Architectures Using CoDeepNEAT and Keras
论文作者
论文摘要
机器学习是一个庞大的计算机科学和统计研究领域,致力于通过不需要明确说明的算法执行计算任务,而是依靠来自数据样本的学习模式来自动推断。机器学习项目涉及的大部分工作是定义最佳类型的算法来解决给定的问题。神经网络 - 尤其是深神经网络 - 是该领域的主要解决方案类型。但是,这些网络本身可以根据为其做出的建筑选择产生非常不同的结果。找到给定问题的最佳网络拓扑和配置是一个挑战,它需要域知识和测试工作,这是由于需要考虑的大量参数而引起的。这项工作的目的是提出从神经进化领域的良好进化技术实施,该技术设法自动化拓扑和超参数选择的任务。它使用流行且易于访问的机器学习框架-Keras-作为后端,呈现结果并提出了有关原始算法的更改。该实现可在GitHub(https://github.com/sbcblab/keras-codeepneat)上获得,并提供文档和示例,以复制为这项工作执行的实验。
Machine learning is a huge field of study in computer science and statistics dedicated to the execution of computational tasks through algorithms that do not require explicit instructions but instead rely on learning patterns from data samples to automate inferences. A large portion of the work involved in a machine learning project is to define the best type of algorithm to solve a given problem. Neural networks - especially deep neural networks - are the predominant type of solution in the field. However, the networks themselves can produce very different results according to the architectural choices made for them. Finding the optimal network topology and configurations for a given problem is a challenge that requires domain knowledge and testing efforts due to a large number of parameters that need to be considered. The purpose of this work is to propose an adapted implementation of a well-established evolutionary technique from the neuroevolution field that manages to automate the tasks of topology and hyperparameter selection. It uses a popular and accessible machine learning framework - Keras - as the back-end, presenting results and proposed changes concerning the original algorithm. The implementation is available at GitHub (https://github.com/sbcblab/Keras-CoDeepNEAT) with documentation and examples to reproduce the experiments performed for this work.