论文标题
完全电磁绿色的球形对称开放光学系统的二元,并消除了谐振状态扩展中的静态模式
Full electromagnetic Green's dyadic of spherically symmetric open optical systems and elimination of static modes from the resonant-state expansion
论文作者
论文摘要
提出了整个6x6二元格林的一般分析形式,显示了球形对称的开放光学系统的功能,并为真空中的同质球提供了明确的解决方案。使用Mittag-Leffler定理得出了绿色函数的不同光谱表示,并分析了它们与精确解决方案的收敛性,从而使我们可以选择最佳表示。基于它们,制定了更有效的谐振状态扩展版本(RSE),特别关注静态模式贡献,包括RSE的版本,完全消除了静态模式。 RSE的这些一般版本适用于非球形光学系统,并在真空中的介电球体的准确溶解示例中进行了验证和说明,并具有其大小和折射率的扰动,证明了与横向电气和横向电磁极化的精确溶液相同的收敛水平。
A general analytic form of the full 6x6 dyadic Green's function of a spherically symmetric open optical system is presented, with an explicit solution provided for a homogeneous sphere in vacuum. Different spectral representations of the Green's function are derived using the Mittag-Leffler theorem, and their convergence to the exact solution is analyzed, allowing us to select optimal representations. Based on them, more efficient versions of the resonant-state expansion (RSE) are formulated, with a particular focus on the static mode contribution, including versions of the RSE with a complete elimination of static modes. These general versions of the RSE, applicable to non-spherical optical systems, are verified and illustrated on exactly solvable examples of a dielectric sphere in vacuum with perturbations of its size and refractive index, demonstrating the same level of convergence to the exact solution for both transverse electric and transverse magnetic polarizations.