论文标题

多功能多机器人蒙特卡洛树搜索计划器,用于在线覆盖路径计划

A Versatile Multi-Robot Monte Carlo Tree Search Planner for On-Line Coverage Path Planning

论文作者

Hyatt, Phillip, Brock, Zachary, Killpack, Marc D.

论文摘要

移动机器人在减少人类执行诸如吸尘,播种,收获,绘画,搜索和救援和检查等工作的需求方面拥有巨大的希望。实际上,这些任务通常必须在没有该区域的精确图的情况下完成,并且可以通过使用多个机器人一起工作来更快地完成。用多个机器人同时覆盖和映射区域的任务称为多机器人在线覆盖范围,并且是一个不断增长的研究领域。许多多机器人在线覆盖路径计划算法已作为建立良好的离线覆盖算法的扩展开发。在这项工作中,我们基于从游戏理论和机器学习 - 蒙特卡洛树搜索借用的方法来介绍一种新颖的方法,以对多机器人在线覆盖路径计划进行。我们实施了蒙特卡洛树搜索计划者,并将完成时间与基于Boustrophon的在线多机器人计划者进行比较。在模拟中,MCTS规划师在模拟中与常规Boustrophedon算法相同,该算法改变了机器人的数量和地图中障碍物的密度。通过在执行相同的覆盖范围任务的同时结合诸如转弯最小化之类的辅助目标,可以证明MCTS计划者的多功能性。 MCT计划者的多功能性表明,它非常适合移动机器人技术中出现的许多多目标任务。

Mobile robots hold great promise in reducing the need for humans to perform jobs such as vacuuming, seeding,harvesting, painting, search and rescue, and inspection. In practice, these tasks must often be done without an exact map of the area and could be completed more quickly through the use of multiple robots working together. The task of simultaneously covering and mapping an area with multiple robots is known as multi-robot on-line coverage and is a growing area of research. Many multi-robot on-line coverage path planning algorithms have been developed as extensions of well established off-line coverage algorithms. In this work we introduce a novel approach to multi-robot on-line coverage path planning based on a method borrowed from game theory and machine learning- Monte Carlo Tree Search. We implement a Monte Carlo Tree Search planner and compare completion times against a Boustrophedon-based on-line multi-robot planner. The MCTS planner is shown to perform on par with the conventional Boustrophedon algorithm in simulations varying the number of robots and the density of obstacles in the map. The versatility of the MCTS planner is demonstrated by incorporating secondary objectives such as turn minimization while performing the same coverage task. The versatility of the MCTS planner suggests it is well suited to many multi-objective tasks that arise in mobile robotics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源