论文标题

通过自我注意力网络的重要性估计

Feature Importance Estimation with Self-Attention Networks

论文作者

Škrlj, Blaž, Džeroski, Sašo, Lavrač, Nada, Petkovič, Matej

论文摘要

黑盒神经网络模型被广泛用于行业和科学,但很难理解和解释。最近,引入了注意机制,从而提供了对神经语言模型内部运作的见解。本文探讨了基于注意力的神经网络机制来估计特征重要性,以解释从命题(表格)数据中学到的模型。由拟议的自发网络(SAN)体系结构评估的特征重要性估计值与已建立的Relieff,共同信息和基于森林的随机估计值进行了比较,这些估计值在实践中广泛用于模型解释。我们第一次对十个真实和合成数据集的算法进行无标度的重要性比较,以研究所得特征重要性估计值的相似性和差异,这表明SANS识别出与其他方法相似的高级特征。我们证明了SANS识别特征相互作用,在某些情况下,这些相互作用比基线会产生更好的预测性能,这表明注意力超出了仅几个关键特征的相互作用,并检测到与所考虑的学习任务相关的较大功能子集。

Black-box neural network models are widely used in industry and science, yet are hard to understand and interpret. Recently, the attention mechanism was introduced, offering insights into the inner workings of neural language models. This paper explores the use of attention-based neural networks mechanism for estimating feature importance, as means for explaining the models learned from propositional (tabular) data. Feature importance estimates, assessed by the proposed Self-Attention Network (SAN) architecture, are compared with the established ReliefF, Mutual Information and Random Forest-based estimates, which are widely used in practice for model interpretation. For the first time we conduct scale-free comparisons of feature importance estimates across algorithms on ten real and synthetic data sets to study the similarities and differences of the resulting feature importance estimates, showing that SANs identify similar high-ranked features as the other methods. We demonstrate that SANs identify feature interactions which in some cases yield better predictive performance than the baselines, suggesting that attention extends beyond interactions of just a few key features and detects larger feature subsets relevant for the considered learning task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源