论文标题
数据驱动的有限元方法:理论和应用
Data Driven Finite Element Method: Theory and Applications
论文作者
论文摘要
在这项工作中介绍了数据驱动的有限元方法(DDFEM),该方法占了两个以上的材料状态变量。 DDFEM框架是由(1,2)激励的,可以说明多个状态变量,即。应力,应变,应变率,失败应力,材料降解和各向异性,以前尚未使用。 DDFEM在非线性弹性固体的线性元素的背景下实现。呈现的框架可直接使用实验数据将其用于多种应用程序。通过使用DDFEM框架预测包括纳米材料和生物材料在内的各种应用中的变形,降解和失败来证明这一点。通过使用Delaunay三角策略来证明没有结构或顺序的散射数据,还显示了预测未知和非结构化数据集的DDFEM能力。该框架能够捕获应变率依赖性变形,材料各向异性,材料降解以及过去尚未呈现的失败。预测的结果表明,从文献和DDFEM预测中获取的数据集之间的一致性非常好,而无需制定复杂的组成型模型并避免乏味的材料参数识别。
A data driven finite element method (DDFEM) that accounts for more than two material state variables has been presented in this work. DDFEM framework is motivated from (1,2) and can account for multiple state variables, viz. stresses, strains, strain rates, failure stress, material degradation, and anisotropy which has not been used before. DDFEM is implemented in the context of linear elements of a nonlinear elastic solid. The presented framework can be used for variety of applications by directly using experimental data. This has been demonstrated by using the DDFEM framework to predict deformation, degradation and failure in diverse applications including nanomaterials and biomaterials for the first time. DDFEM capability of predicting unknown and unstructured dataset has also been shown by using Delaunay triangulation strategy for scattered data having no structure or order. The framework is able to capture the strain rate dependent deformation, material anisotropy, material degradation, and failure which has not been presented in the past. The predicted results show a very good agreement between data set taken from literature and DDFEM predictions without requiring to formulate complex constitutive models and avoiding tedious material parameter identification.