论文标题

高分辨率扫描透射电子显微镜数据的铁电材料中竞争原子机制的因果分析

Causal analysis of competing atomistic mechanisms in ferroelectric materials from high-resolution Scanning Transmission Electron Microscopy data

论文作者

Ziatdinov, Maxim, Nelson, Chris, Zhang, Xiaohang, Vasudevan, Rama, Eliseev, Eugene, Morozovska, Anna N., Takeuchi, Ichiro, Kalinin, Sergei V.

论文摘要

机器学习已成为一种有力的工具,用于分析电子和扫描探针显微镜的介观和原子解析图像和光谱,其应用从特征提取到信息压缩到相关的顺序参数,并阐明相关的顺序参数,再到对数据进行成像重建结构模型的反转。但是,机器学习方法的基本局限性是它们的相关性质,导致对混淆因素的极端敏感性。在这里,我们实施了结构扫描传输电子显微镜(STEM)数据的因果分析的工作流程,并探讨了铁电钙钛矿中跨铁电 - 抗抗抗曲面相变的物理和化学作用之间的相互作用。 Sm掺杂的BifeO3的组合库是生长的,以覆盖从纯铁电BFO到Orthorhombic 20%Sm掺杂BFO的组成范围。原子解析的茎图像是用于所选组成的,用于创建一组局部组成,结构和极化场描述符。信息几何因果推理(IGCI)和加性噪声模型(ANM)分析用于在描述符之间建立成对因果方向,从而在因果方向上订购了数据集。比较了整个组合物中IgCI和ANM的因果链,并表明整个组成序列中存在常见的因果机制。最终,我们认为对多模式数据的因果分析将允许探索多种竞争机制之间的因果关系,这些机制控制了形态材料的独特功能和铁电松弛剂的独特功能。

Machine learning has emerged as a powerful tool for the analysis of mesoscopic and atomically resolved images and spectroscopy in electron and scanning probe microscopy, with the applications ranging from feature extraction to information compression and elucidation of relevant order parameters to inversion of imaging data to reconstruct structural models. However, the fundamental limitation of machine learning methods is their correlative nature, leading to extreme susceptibility to confounding factors. Here, we implement the workflow for causal analysis of structural scanning transmission electron microscopy (STEM) data and explore the interplay between physical and chemical effects in ferroelectric perovskite across the ferroelectric-antiferroelectric phase transitions. The combinatorial library of the Sm-doped BiFeO3 is grown to cover the composition range from pure ferroelectric BFO to orthorhombic 20% Sm-doped BFO. Atomically resolved STEM images are acquired for selected compositions and are used to create a set of local compositional, structural, and polarization field descriptors. The information-geometric causal inference (IGCI) and additive noise model (ANM) analysis are used to establish the pairwise causal directions between the descriptors, ordering the data set in the causal direction. The causal chain for IGCI and ANM across the composition is compared and suggests the presence of common causal mechanisms across the composition series. Ultimately, we believe that the causal analysis of the multimodal data will allow exploring the causal links between multiple competing mechanisms that control the emergence of unique functionalities of morphotropic materials and ferroelectric relaxors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源