论文标题

学习用于多机构增强学习的结构化沟通

Learning Structured Communication for Multi-agent Reinforcement Learning

论文作者

Sheng, Junjie, Wang, Xiangfeng, Jin, Bo, Yan, Junchi, Li, Wenhao, Chang, Tsung-Hui, Wang, Jun, Zha, Hongyuan

论文摘要

这项工作探讨了多代理增强学习(MARL)设置下的大规模多代理通信机制。我们总结了MARL文献中经常指定的MARL文献中通信结构的一般类别。然后,我们提出了一个新的框架,该框架通过使用更灵活,更有效的通信拓扑来称为学习结构化交流(LSC)。我们的框架允许自适应代理分组在情节上形成不同的层次结构形成,这是由辅助任务与层次路由协议相结合的。鉴于每个形成的拓扑结构,学会了一个分层图神经网络,以实现小组内和组内通信之间的有效信息信息的生成和传播。与现有的通信机制相反,我们的方法具有明确的,而可以学习层次交流的设计。有关挑战任务的实验表明,所提出的LSC具有较高的沟通效率,可扩展性和全球合作能力。

This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting. We summarize the general categories of topology for communication structures in MARL literature, which are often manually specified. Then we propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology. Our framework allows for adaptive agent grouping to form different hierarchical formations over episodes, which is generated by an auxiliary task combined with a hierarchical routing protocol. Given each formed topology, a hierarchical graph neural network is learned to enable effective message information generation and propagation among inter- and intra-group communications. In contrast to existing communication mechanisms, our method has an explicit while learnable design for hierarchical communication. Experiments on challenging tasks show the proposed LSC enjoys high communication efficiency, scalability, and global cooperation capability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源