论文标题
使用机器学习的粒子光谱发射率的可解释的逆设计
Interpretable inverse design of particle spectral emissivity using machine learning
论文作者
论文摘要
我们检查了尺寸,形状和材料的纳米和微粒系统的光学特性(包括金属和电介质,以及次波长和超级波长状态)。培训数据是通过数值求解MaxWel方程生成的。然后,我们使用决策树和随机森林模型的组合来解决正向问题(粒子设计,光学特性)和逆问题(所需的光学特性,粒子设计范围)。我们表明,即使在相对稀疏的数据集上,这些机器学习模型也以极好的精度解决了前进问题和反向问题,并且比传统方法快4到8个数量级。一个受过训练的模型能够处理我们数据集的全部多样性,从而产生各种不同的候选粒子设计来解决反问题。我们的模型的解释性证实,介电颗粒会大量发射并吸收电磁辐射,而金属颗粒与光的相互作用则由表面模式主导。这项工作证明了可接近和可解释的机器学习模型的可能性,用于跨越广泛而多样的参数空间的设备的快速前进和反向设计。
We examine the optical properties of a system of nano and micro particles of varying size, shape, and material (including metals and dielectrics, and sub-wavelength and super-wavelength regimes). Training data is generated by numerically solving Maxwel Equations. We then use a combination of decision tree and random forest models to solve both the forward problem (particle design in, optical properties out) and inverse problem (desired optical properties in, range of particle designs out). We show that on even comparatively sparse datasets these machine learning models solve both the forward and inverse problems with excellent accuracy and 4 to 8 orders of magnitude faster than traditional methods. A single trained model is capable of handling the full diversity of our dataset, producing a variety of different candidate particle designs to solve an inverse problem. The interpretability of our models confirms that dielectric particles emit and absorb electromagnetic radiation volumetrically, while metallic particles interaction with light is dominated by surface modes. This work demonstrates the possibility for approachable and interpretable machine learning models to be used for rapid forward and inverse design of devices that span a broad and diverse parameter space.