论文标题
神经网络中的细粒度不确定性建模
Fine-grained Uncertainty Modeling in Neural Networks
论文作者
论文摘要
现有的不确定性建模方法试图从分布数据集中检测一个分布点。我们扩展了这一论点,以检测区分(a)的细粒度不确定性。某些点,(b)。不确定的点,但在数据分布中,以及(c)。分布点。我们的方法纠正了过度自信的nn决定,检测到异常值点并学会说``我不知道''当不确定前两个预测之间的关键点时。此外,我们还提供了一种量化类别分布在决策歧管中的机制,并研究了其在模型解释性中的影响。 我们的方法是两步:在第一步中,提出的方法使用从网络中提取的内核激活向量(KAV)构建了类分布。在第二步中,该算法通过基于平方Mahalanobis距离的卡方分布来确定测试点的信心。 我们的方法位于给定的神经网络之上,需要单次扫描培训数据以估计类别分布统计,并且高度可扩展到深层网络和更广泛的较宽的较高前磁性层。作为积极的副作用,我们的方法有助于防止对抗攻击而无需进行任何额外的培训。当在评估阶段,通过我们的稳健不确定性层取代软效果层时,它可以直接实现。
Existing uncertainty modeling approaches try to detect an out-of-distribution point from the in-distribution dataset. We extend this argument to detect finer-grained uncertainty that distinguishes between (a). certain points, (b). uncertain points but within the data distribution, and (c). out-of-distribution points. Our method corrects overconfident NN decisions, detects outlier points and learns to say ``I don't know'' when uncertain about a critical point between the top two predictions. In addition, we provide a mechanism to quantify class distributions overlap in the decision manifold and investigate its implications in model interpretability. Our method is two-step: in the first step, the proposed method builds a class distribution using Kernel Activation Vectors (kav) extracted from the Network. In the second step, the algorithm determines the confidence of a test point by a hierarchical decision rule based on the chi-squared distribution of squared Mahalanobis distances. Our method sits on top of a given Neural Network, requires a single scan of training data to estimate class distribution statistics, and is highly scalable to deep networks and wider pre-softmax layer. As a positive side effect, our method helps to prevent adversarial attacks without requiring any additional training. It is directly achieved when the Softmax layer is substituted by our robust uncertainty layer at the evaluation phase.