论文标题

拓扑扭转元素通过自然密度和寻求解决方案等问题的解决方案

Topological torsion elements via natural density and a quest for solution of Armacost like problem

论文作者

Das, Pratulananda, Ghosh, Ayan

论文摘要

人们可以使用自然密度\ cite {b1}概念的数字理论思想来定义拓扑元素(形成统计表征的亚组,最近在\ cite {dpk}中开发)扩展了Armacost的拓扑构想元素的概念。我们遵循Armacost的界限,他在圆圈组的“拓扑扭转元素描述”中提出了著名的古典问题。在本说明中,我们考虑了Armacost问题的自然密度版本,并在支持方面介绍了拓扑s-torsion元素的完整描述,所有算术序列也提供了问题6.10解决方案\ cite {dpk}中提出的解决方案6.10。

One can use the number theoretic idea of the notion of natural density \cite{B1} to define topological s-torsion elements (which form the statistically characterized subgroups, recently developed in \cite{DPK}) extending Armacost's idea of topological torsion elements. We follow in the line of Armacost who had posed the famous classical problem for "description of topological torsion elements" of the circle group. In this note we consider the natural density version of Armacost's problem and present a complete description of topological s-torsion elements in terms of the support, for all arithmetic sequences which also provides the solution of Problem 6.10 posed in \cite{DPK} .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源