论文标题

查找非平滑非凸功能的固定点的复杂性

Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions

论文作者

Zhang, Jingzhao, Lin, Hongzhou, Jegelka, Stefanie, Jadbabaie, Ali, Sra, Suvrit

论文摘要

我们提供了第一个非反应分析,用于查找非滑动,非凸函数的固定点。特别是,我们研究了Hadamard半差异函数的类别,也许是微积分链规则所具有的最大一类非平滑函数。该类包含诸如Relu神经网络和其他具有非差异激活功能的示例。我们首先表明,在有限的时间内找到具有一阶方法的$ε$ - 稳定点。然后,我们介绍了$(δ,ε)$ - 固定度的概念,该概念允许$ε$ - 值呈梯度是在距离$δ$内评估的广义梯度的凸组合。我们提出了一系列随机的一阶方法,并分析了它们找到$(δ,ε)$ - 固定点的复杂性。此外,我们提供了一个下限,并表明我们的随机算法对$δ$具有最低最佳依赖性。从经验上讲,我们的方法在培训Relu神经网络方面表现良好。

We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonconvex functions. In particular, we study the class of Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions for which the chain rule of calculus holds. This class contains examples such as ReLU neural networks and others with non-differentiable activation functions. We first show that finding an $ε$-stationary point with first-order methods is impossible in finite time. We then introduce the notion of $(δ, ε)$-stationarity, which allows for an $ε$-approximate gradient to be the convex combination of generalized gradients evaluated at points within distance $δ$ to the solution. We propose a series of randomized first-order methods and analyze their complexity of finding a $(δ, ε)$-stationary point. Furthermore, we provide a lower bound and show that our stochastic algorithm has min-max optimal dependence on $δ$. Empirically, our methods perform well for training ReLU neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源