论文标题
来自超轻旋转2场的黑洞超级不稳定性
Black hole superradiant instability from ultralight spin-2 fields
论文作者
论文摘要
超轻的骨骼场是引人注目的深色候选者,并在各种超出标准模型场景中出现。这些磁场可以从旋转黑洞穿过超级不稳定性的能量和角度动量,在此期间,宏观的骨凝结物周围在黑洞周围发展。这种现象的引人注目的特征包括天体物理黑洞的自旋质量分布和冷凝水发出的连续重力波(GW)信号的差距。到目前为止,这些过程已经针对标量字段进行了详细的研究,最近对向量字段进行了研究。在这里,我们通过计算,分析性的时间尺度,直接GW发射和随机背景在黑洞超级计划中迈出了重要的一步,在大规模张量(即旋转$ 2 $)字段的情况下。我们的分析对于任何黑洞自旋和小玻色块都是有效的。大量自旋的不稳定性与标量和矢量案例具有某些特性,但其现象学更为丰富,例如,存在多种模式,具有可比的不稳定性时间尺度,而主要的GW信号是六二氧化碳的六二氧化碳,而不是四极了。在(1,10^{10})m_ \ odot $中旋转黑洞的电磁和GW观察结果可以约束假定的旋转 - $ 2 $ field的质量$ 10^{ - 22} \ 22} \ 22} \ simsim m_b \,{对于$ 10^{ - 17} \ Lessim m_b \,{\ rm c^2/ev} \ Lessim 10^{ - 15} $,Space Mission Lisa可以检测到Redshift $ Z = 20 $的源的连续GW信号,甚至更大。
Ultralight bosonic fields are compelling dark-matter candidates and arise in a variety of beyond-Standard-Model scenarios. These fields can tap energy and angular momentum from spinning black holes through superradiant instabilities, during which a macroscopic bosonic condensate develops around the black hole. Striking features of this phenomenon include gaps in the spin-mass distribution of astrophysical black holes and a continuous gravitational-wave~(GW) signal emitted by the condensate. So far these processes have been studied in great detail for scalar fields and, more recently, for vector fields. Here we take an important step forward in the black-hole superradiance program by computing, analytically, the instability time scale, the direct GW emission, and the stochastic background, in the case of massive tensor (i.e., spin-$2$) fields. Our analysis is valid for any black hole spin and for small boson masses. The instability of massive spin-$2$ fields shares some properties with the scalar and vector cases, but its phenomenology is much richer, for example there exist multiple modes with comparable instability time scales, and the dominant GW signal is hexadecapolar rather than quadrupolar. Electromagnetic and GW observations of spinning black holes in the mass range $M\in(1,10^{10})M_\odot$ can constrain the mass of a putative spin-$2$ field in the range $10^{-22} \lesssim m_b\,{\rm c^2/eV} \lesssim 10^{-10}$. For $10^{-17}\lesssim m_b\,{\rm c^2/eV}\lesssim 10^{-15}$, the space mission LISA could detect the continuous GW signal for sources at redshift $z=20$, or even larger.