论文标题

实施和审核私人系统的指南

Guidelines for Implementing and Auditing Differentially Private Systems

论文作者

Kifer, Daniel, Messing, Solomon, Roth, Aaron, Thakurta, Abhradeep, Zhang, Danfeng

论文摘要

差异隐私是对算法和代码的信息理论约束。它提供了当前被视为隐私保护的黄金标准的隐私泄漏和正式隐私保证的量化。在本文中,我们为开发特定于差异隐私的单元测试技术提供了一组初始的“最佳实践”,用于检查是否正确应用差异隐私的指南以及参数设置的建议。本文的起源是Facebook和社会科学的一项倡议,旨在为社会科学研究人员提供对URL-Shares数据集的程序化访问。为了在保护隐私的同时最大程度地提高数据的效用,研究人员应通过支持差异隐私的交互式平台访问数据。 本文的目的是提供通常可以在各种系统中重复使用的准则和建议。因此,除了在学术论文中出现细节和理论的系统外,没有任何特定的平台。

Differential privacy is an information theoretic constraint on algorithms and code. It provides quantification of privacy leakage and formal privacy guarantees that are currently considered the gold standard in privacy protections. In this paper we provide an initial set of "best practices" for developing differentially private platforms, techniques for unit testing that are specific to differential privacy, guidelines for checking if differential privacy is being applied correctly in an application, and recommendations for parameter settings. The genesis of this paper was an initiative by Facebook and Social Science One to provide social science researchers with programmatic access to a URL-shares dataset. In order to maximize the utility of the data for research while protecting privacy, researchers should access the data through an interactive platform that supports differential privacy. The intention of this paper is to provide guidelines and recommendations that can generally be re-used in a wide variety of systems. For this reason, no specific platforms will be named, except for systems whose details and theory appear in academic papers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源